We hope that you find one or more of the CUBDL-related resources useful for your own work. Our four resources include:
If you use any of the above resources, citations to the following three references are required:
- MAL Bell, J Huang, D Hyun, YC Eldar, R van Sloun, M Mischi, “Challenge on Ultrasound Beamforming with Deep Learning (CUBDL)”, Proceedings of the 2020 IEEE International Ultrasonics Symposium, 2020 [pdf]
- Muyinatu A. Lediju Bell, Jiaqi Huang, Alycen Wiacek, Ping Gong, Shigao Chen, Alessandro Ramalli, Piero Tortoli, Ben Luijten, Massimo Mischi, Ole Marius Hoel Rindal, Vincent Perrot , Hervé Liebgott, Xi Zhang, Jianwen Luo, Eniola Oluyemi, Emily Ambinder, “Challenge on Ultrasound Beamforming with Deep Learning (CUBDL) Datasets”, IEEE DataPort, 2019 [Online]. Available: http://dx.doi.org/10.21227/f0hn-8f92
- D. Hyun, A. Wiacek, S. Goudarzi, S. Rothlübbers, A. Asif, K. Eickel, Y. C. Eldar, J. Huang, M. Mischi, H. Rivaz, D. Sinden, R.J.G. van Sloun, H. Strohm, M. A. L. Bell, Deep Learning for Ultrasound Image Formation: CUBDL Evaluation Framework & Open Datasets, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(12):3466-3483, 2021[pdf]
Datasets are now available for release by visiting the CUBDL DataPort site.
Peruse the latest research referencing our resources here [3], here [1] and here [2].