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Abstract—Recent developments in deep learning have created
immense potential for improving ultrasound beamforming. We
organized a Challenge on Ultrasound Beamforming with Deep
Learning (CUBDL) to benchmark methodologies in this space
with two transmission data types: plane wave and focused
transmissions. Plane wave ultrasound transmissions have created
new opportunities for ultrafast ultrasound imaging, while focused
ultrasound transmissions are more traditional and are widely
used in most clinical ultrasound systems available today. For both
transmission types, we challenged participants to obtain the best
image quality under the fastest possible frame rates. CUBDL or-
ganizers solicited datasets from several leading ultrasound groups
around the world and received a total of 106 data sequences
including in vivo, ex vivo, simulated, and experimental phantom
datasets. These submissions formed our test datasets, which were
not released to participants while the challenge was open. The
challenge was composed of three optional tasks (one including two
subtasks) that were evaluated using the test datasets. Participants
had the option to provide their results for a minimum of one up
to a maximum of four tasks or subtasks: (1) beamforming with
deep learning after a single plane wave transmission, which had
two subtasks to either (a) match or (b) exceed traditional image
quality metrics obtained with multiple plane wave transmissions;
(2) beamforming with deep learning after a few plane wave
transmissions; (3) beamforming with deep learning to achieve
dynamic transmit focusing from datasets acquired with a single
transmit focus. Evaluation included image quality metrics as well
as network complexity metrics. A challenge website was created
to provide information and updates: https://cubdl.jhu.edu/.

I. INTRODUCTION

Ultrafast imaging is often achieved by transmitting plane
waves that span a wide region of interest (as opposed to
transmitting focused beams line-by-line) [1], [2]. Plane wave
imaging increases frame rates by over 100-fold, when com-
pared to focused transmissions, thereby enabling applications,
such as real-time brain activity monitoring, Doppler imaging,
or shear wave elastography [1], [3], [4]. Increasing frame
rates for future tasks requires using only a few plane waves
for beamforming and as a result, suffers from image quality
degradation. While previous work presented during the Plane-
wave imaging challenge in medical ultrasound (PICMUS)
[2] explored different beamforming methods for plane-wave
images, including minimum variance beamforming [5], short-
lag spatial coherence beamforming [6], and iterative maximum

a posteriori beamforming [7] (among others), these methods
are known to suffer from high computational complexity and
complicate real-time applications. In direct comparison to
plane wave imaging, focused transmissions are typically used
in most commercial ultrasound imaging scanners [3], [4]. One
downside of focused transmissions is that only one focus
is allowed per image acquisition. While synthetic aperture
beamforming [8] can be used to dynamically focus ultrasound
transmissions, dynamic focusing generally involves a high
computational load.

Recent developments in deep learning have created immense
potential for ultrasound imaging research [9]. The Challenge
on Ultrasound Beamforming with Deep Learning (CUBDL)
was designed to explore the benefits of using deep learning to
create images after: (1) plane wave ultrasound transmission,
which has the potential to create new opportunities for ultrafast
ultrasound imaging and (2) traditional focused ultrasound
transmission, which is widely used in most clinical ultrasound
systems available today. This goal was centered around three
independent tasks associated with CUBDL. The first and sec-
ond tasks challenged participants to balance both image quality
and frame rates with the application of novel deep learning
approaches to plane wave imaging. The third task challenged
participants to explore deep learning approaches to achieve
dynamic transmit focusing with the attractive possibility of
faster and simpler computations than existing methods.

The remainder of this paper is organized as follows. Section
II provides more details on specific challenge tasks, evaluation
datasets that were sourced from multiple ultrasound research
labs around the world, example images from these datasets,
and the evaluation metrics for each task. We recommend these
metrics as the baseline standard for evaluation of any future
ultrasound beamforming with deep learning work. Section
III summarizes some key details about the submissions we
received while the challenge was open. Section IV includes
links to multiple resources that were developed to support this
challenge, including the challenge website (which will remain
available to provide future updates for the community) [10],
the IEEE DataPort site that was used to accept submissions
[11], and the website that contains evaluation code that we



recommend for future use by anyone evaluating data in this
research area, as well as example code to input network
weights for beamforming evaluation [12]. Section V provides
concluding thoughts.

II. CHALLENGE OVERVIEW

A. Tasks

CUBDL was composed of three optional tasks. Participants
had the option to provide their results for a minimum of one
up to a maximum of four tasks or subtasks.

• Task 1: Beamforming with deep learning after a
single plane wave transmission. Task 1 has two optional
subtasks.

1) Task 1a was explicitly focused on creating a high-
quality image from a single plane wave to match
a higher quality image created from multiple plane
waves.

2) Task 1b gave more freedom to create an image
that will be benchmarked against the highest SNR,
CNR, gCNR, and contrast. These values can be
better than those obtained with multiple plane wave
transmissions.

• Task 2: Beamforming with deep learning after a few
plane wave transmissions. Task 2 imposed a maximum
of 10 plane waves but lets participants choose from
provided angles to create the best image quality possible.

• Task 3: Beamforming with deep learning to achieve
dynamic transmit focusing. Task 3 enabled participants
to compare the results of a deep learning dynamic trans-
mit focusing implementation that will be useful with
current transmit beamforming techniques implemented on
most clinical systems today.

B. Datasets

No training data were included because a review of cur-
rent literature on the topic of deep learning for ultrasound
beamforming reveals that there are many different training
approaches. For example, in [23] the authors do not use
ultrasound images for training, but still arrived at good results
when starting the training process with digital photographs.
Another approach uses high-quality images constructed from
synthetic aperture measurements during training [24]. Other
techniques train with channel data input prior to applying
receive delays [25], use sub-aperture beamformed data as
the network input [23], [26], or only replace portions of the
beamforming process [17], [27]–[29]. Additional methods are
summarized in a recent review on this topic [9].

Given these multiple training approaches, the organizers
decided to keep the training open-ended and focused on
challenging participants to produce a network that achieved
specific tasks and met specified requirements. We also rec-
ognize that generalization of trained networks to multiple
ultrasound systems is a key requirement for advancement of
this emerging research field. Toward this end, the CUBDL
organizers solicited channel data from multiple ultrasound

Fig. 1. Example phantom images.

Fig. 2. Example in vivo images. A subset of the in vivo images in the test
set were previously published in [13]–[15], [15]–[20].

groups worldwide to be used as test data for the challenge.
The compiled database of test images includes a total of
106 datasets with the following breakdown: (1) 49 exper-
imental phantom data sequences acquired with plane wave
transmissions; (2) 25 in vivo data sequences of the heart of
thirteen patients, the carotid of two healthy volunteers, and the
brachioradialis of a healthy volunteer, each acquired with plane
or diverging wave transmission; (3) 6 experimental phantom
data sequences acquired with focused transmissions; (4) 24 in
vivo data sequences of the breast of ten patients, the carotid
of a healthy volunteer, and the heart of a healthy volunteer,



Fig. 3. Example simulation images [21], [22]

each acquired with focused transmissions; and (5) 2 Field II
[30], [31] simulations.

The phantom data consisted a total of 12 different phan-
toms from 6 manufacturers including: (1) CIRS models 040,
049, 054GS, 050 and 059; (2) GAMMEX models 404GSLE,
403TM and 410 SCG; (3) NPL Thermal Test Phantom; (4)
CAR Blue Phantom Elastography Breast Model; (5) True
Phantom Solutions Brain Phantom; and (6) Dansk Phantom
Service Model 453. Three of the phantom acquisitions in-
cluded a layer of ex vivo porcine abdominal tissue to introduce
acoustic clutter.

This wide range of channel data was acquired with 4
ultrasound scanners and 8 ultrasound transducers. The ac-
quisition center frequencies ranged from 2.5 MHz to 12.5
MHz. The sampling frequencies ranged from 10 MHz to
78.125 MHz. The ultrasound transducers consisted of linear
and phased arrays. Participants were provided with the Data
Guide available on the CUBDL website [10], which listed the
breakdown of these parameters for each provided dataset.

Data were provided by 9 groups total, referenced here-
after by the short-hand 3-letter code provided in parentheses:
(1) Department of Radiology, Mayo Clinic, US (MYO); (2)
Microelectronic Systems Design Laboratory, University of
Florence, Italy (UFL); (3) Signal Processing Systems group,
Eindhoven University of Technology, Netherlands (EUT); (4)
CREATIS, Insa Lyon, France (INS); (5) Research Group for
Digital Signal Processing and Image Analysis, University of
Oslo, Norway (OSL); (6) Ultrasound Elasticity and Imaging
Laboratory, Columbia University, USA (COL); (7) Depart-
ment of Biomedical Engineering, Tsinghua University, China
(TSH); (8) Department of Biomedical Engineering, Lund Uni-
versity, Sweden (LUN); and (9) Photoacoustic and Ultrasonic
Systems Engineering Lab, Johns Hopkins University, USA
(JHU).

In order to provide participants with example images from
the test set database, Figs. 1-3 show a sampling from 30% of
the above-described data.

C. Evaluation Metrics

The following general metrics apply to Tasks 1-3:

• contrast
• contrast-to-noise ratio (CNR)
• generalized CNR (gCNR) [32], [33]
• speckle signal-to-noise ratio (SNR)
• resolution (measured as the axial and lateral full widths

at half maximimum of line profiles through singular point
targets)

• network complexity (measured as the total number of
trainable parameters in the model).

With Task 1a, we have an additional opportunity to assess
performance by matching the images achieved with a high
number of multiple plane wave transmissions. Therefore, we
additionally assessed the following image-to-image correlation
metrics for this task:

• L1 Loss
• L2 Loss
• PSNR
• Normalized Cross-Correlation.
For Tasks 1a, 2, and 3, we were concerned with preserving

speckle statistics. Therefore, SNR was measured and partici-
pants were ranked based on their ability to preserve the SNR of
ground truth measurements. Given the more futuristic outlook
of Task 1b, we allowed participants to obtain the highest
possible SNR, regardless of speckle preservation.

For Task 3, we proposed to measure the general image qual-
ity evaluation metrics (i.e., contrast, CNR, gCNR, SNR, axial
and lateral resolution), the preservation of speckle, and the
speckle-based resolution both at and away from the transmit
focus in order to assess the effectiveness of deep learning-
based dynamic transmit focusing.

For each task or subtask, participants were rank ordered
using each metric described above and received a rank for each
metric. These rankings will be grouped into two categories:
(1) image quality and (2) network complexity (because we are
interested in balancing image quality with display frame rates).
We then averaged the ranks of the metrics obtained by each
participant within these two groups. The average rank from
each group was summed. This scoring system is represented
mathematically as follows:

Final Score =

∑
Image Quality Metric Rankings

TIQ

+

∑
Network Complexity Metric Rankings

TNC
,

where TIQ and TNC are the total numbers of image quality
metric rankings and network complexity rankings, respec-
tively. To win the challenge, a participant needed to have the
lowest final score.

D. Example Code

Example code [12] was provided to show participants how
the test data would be organized. Plane wave and focused
transmit raw data were provided to the participants as Python
classes. We also provided a pixel grid that contained the
coordinates for each reconstructed pixel.



Challenge participants were asked to implement models
that take the appropriate data object and grid as input and
produce the final beamformed image as output (e.g., perform
delay-and-sum (DAS) beamforming). As starter code, we
provided PyTorch [34] and TensorFlow [35] implementations
of DAS that converted the raw data from PICMUS [2] into
beamformed images.

Participants were free to incorporate deep learning at any
point in the image reconstruction pipeline (e.g., before, during,
or after DAS, or replacing DAS entirely). The only require-
ment was that the final output of the model be image data (or
IQ data that was converted into image data, as in the provided
example).

We also provided functions for some of the image metrics,
although it was up to the challenge participants to select the
proper regions of interest (ROIs) in the image to be used with
the metrics. Participants were also informed that during model
evaluation, ROIs would be specified via the “grid” input.

III. SUBMISSION SUMMARY

The CUBDL organizers received a total of four submissions.
Three of the submitters participated in Task 1a and one
participated in Task 1b, which reduced the number of test
datasets for the evaluation of participant results. There were
a total of 21 unique datasets forming a total 30 different test
cases, submitted by 6 different universities (EUT, INS, MYO,
OSL, UFL, TSH).

We asked the first authors of each submission to self-
identify their level of experience with beamforming prior to
participation in the challenge on a scale of 1 to 5, with 1 being
novice and 5 being expert. We received the responses reported
in Fig. 4.

These challenge participants are scheduled to present their
submitted networks at the virtual IEEE International Ultra-
sonics Symposium (IUS), through a series of live poster and
recorded oral presentations. The winner (to be announced at
the virtual symposium) will receive a cash prize (sponsored
by Verasonics, Inc.).

Fig. 4. Beamforming and deep learning experience levels of challenge
participants prior to CUBDL (1=novice, 5=expert).

IV. CUBDL-RELATED RESOURCES

In addition to evaluating and comparing submissions using
the metrics described in Section II-C, one additional goal of
CUBDL was to create a database that the ultrasound and
deep learning community can use for future work. Toward this
end, we share the following websites containing the challenge
description, test data, and evaluation code:

• CUBDL Website: https://cubdl.jhu.edu/. This website
contains the challenge description and is the official
source of all resources for the challenge, including the
following two links. Future updates to data or code avail-
ability will be advertised on this website. This website
also contains a link to literature references that focus on
applications of deep learning in ultrasound systems [10].

• IEEE DataPort: https://ieee-dataport.org/competitions/
challenge-ultrasound-beamforming-deep-learning-cubdl.
This website was used by data contributors to upload
their datasets, by participants to submit results, and
by the organizers to download and share datasets and
submissions for evaluation [11].

• CUBDL Code: https://gitlab.com/dongwoon.hyun/cubdl.
This website shares example code to input network
weights for beamforming evaluation, as well as our
evaluation code [12].

We also intend to release all unrestricted test datasets with
the publication of a journal paper describing the top submis-
sions, with the ultimate goal of providing useful reference
benchmark datasets and networks for future follow-up work.
These releases will be available through one or more of the
above sites.

V. CONCLUSION

Deep learning is revolutionizing many fields, and we believe
that it will similarly impact ultrasound imaging. CUBDL has
therefore been set up as an inclusive challenge, with the aim
of advancing the state of the art of ultrasound beamforming by
deep learning – driven by our community – and facilitating the
debate and discussion associated with it. The tools, resources,
and tasks developed and designed for this challenge are
recommended as a benchmark standard for both beginners and
experts in this research area going forward.
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R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser et al.,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

https://cubdl.jhu.edu/
http://dx.doi.org/10.21227/f0hn-8f92
http://dx.doi.org/10.21227/f0hn-8f92
https://gitlab.com/dongwoon.hyun/cubdl
https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/
https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://tensorflow.org/

	Introduction
	Challenge Overview
	Tasks
	Datasets
	Evaluation Metrics
	Example Code

	Submission Summary
	CUBDL-Related Resources
	Conclusion
	References

