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Abstract—Compared to traditional focused transmissions,
plane wave (PW) ultrasound imaging has the potential to enable
higher frame rates, which is clinically relevant to real-time
applications and ultrafast imaging. However, when reducing the
number of PW transmissions to reduce image formation times,
PW imaging is confounded by image quality degradation, acous-
tic clutter, and speckle noise. To tackle this challenge, we present
a deep learning-based method to analyze raw radiofrequency
(RF) channel data acquired by the ultrasound probe and convert
this signal to the final B-mode image, bypassing the traditional
beamforming procedure. The deep learning architecture for this
approach relies on a conditional generative adversarial network
(cGAN), in which the generative model and classifying model
work simultaneously to produce an indistinguishable output from
a ground truth. The cGAN was trained to predict B-mode
images that look like beamformed PW results after multiple
insonifications. This network was trained and tested utilizing a
publicly accessible PICMUS database composed of in vivo and ex
vivo ultrasound inclusions with randomly distributed scatterers
in various combinations. The proposed method produces signal-
to-noise ratio (SNR) enhancements from 1.112 to 1.540 when
compared with conventional delay-and-sum (DAS) beamforming
of a single PW insonification. The cross-correlation coefficient
between a 75 PW image and cGAN-predicted data was 0.976, an
improvement over the 0.641 obtained when the 75 PW image
was cross-correlated with a DAS PW image created after a
single insonification. These results demonstrate the potential of
generative adversarial networks to substitute traditional DAS
beamforming in future applications.

Index Terms—Deep Learning, Conditional Adversarial Net-
works, Beamforming, Ultrafast Ultrasound Imaging

I. INTRODUCTION

Improving both frame rates and image quality are often two
goals for next-generation medical ultrasound imaging systems,
with much attention dedicated to plane wave ultrasound imag-
ing to maximize these criteria [1]. Compared to conventional
focused insonification, plane wave (PW) imaging achieves
high frame rates equal to thousands of images per second,
which has promising potential for electromechanical wave
imaging, high sensitivity Doppler imaging, and ultrasonic
imaging of brain activity [2]. However, reducing the number
of plane wave transmissions to achieve even faster real-time
imaging tends to suffer from decreased resolution and con-
trast, thus reducing overall image quality. In addition, several
approaches have been attempted to eliminate the influence of
speckle noise and acoustic clutter such as coherent plane-
wave compounding [2], while minimum variance adaptive
beamforming [3] and short-lag spatial coherence (SLSC)

beamforming [4] have been explored to compensate image
degradation and improve image resolution.

In contrast to conventional model-based mathematical tech-
niques, there has been a growing interest in applying convo-
lutional neural networks (CNNs) to ultrasound beamforming.
This application has already shown promise in medical im-
age analysis with regard to feature extraction, classification,
and restoration [5]. Perdios et al. [6] used CNNs to learn
the non-linear mapping between single and multiple plane
wave reconstructed data to enhance image quality following
delay-and-sum (DAS) beamforming. To minimize latency and
computational cost, Nair et al. [7] trained a CNN model to
transform raw RF channel data to a segmented mask, ex-
cluding DAS beamforming and other post-processing methods
(e.g., envelope detection, log compression, filter, and scan
conversion).

A generative adversarial network (GAN) was later explored
to simultaneously create ultrasound images comparable to
DAS beamformed images and segment corresponding cysts
from surrounding tissue [8]. In this paper, we demonstrate the
use of a conditional GAN (cGAN) [9] to directly transform
RF channel data to a B-mode ultrasound image. Specifically,
we utilize a cGAN with two discriminators. This adversarial
network has already shown strong potential in computer graph-
ics (including object transfiguration and image enhancement
[10], [11]) and in ultrasound imaging [12]. In this paper, we
employ RF channel data as an input signal for cGAN-based
alternative method and evaluate the reconstruction results with
the high quality image given by multiple PW transmissions.
Results were submitted for comparison and evaluation in the
Challenge on Ultrasound Beamforming with Deep Learning
(CUBDL) [13], [14].

II. METHODS

A. Dataset

We pre-trained our neural network using 400 pairs of CMP
Facedes datasets [15] including the graphics transformation
from cartoon architectural labels to real photos, shown in
Fig. 1(b). Image pre-processing included grayscale conver-
sion of colored images. We augmented the pre-training data
by applying various geometric transformations (i.e., flipping,
cutting, rotating) to increase the diversity of the training
data. The training dataset was generated from 1500 single
PW ultrasound images from PICMUS [1] and the MATLAB
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Fig. 1: (a) Overview of the proposed cGAN method to substitute conventional DAS beamforming. (b) Generator and
discriminator architecture of the proposed cGAN. Black arrows represent concatenation.

TABLE I: PWI Configuration Parameters

Parameter L11-4v

Element number 128

Pitch 300 µm

Center frequency 5.133 MHz

Bandwidth 67%

Element width 0.27 mm

Transmit frequency 5.208 MHz

Speed of sound 1540 m/s

Sampling frequency 20.832 MHz

ultrasound toolbox (USTB) [16]. The configuration parameters
are described in Table I. To increase the robustness of our
network, both simulation and experimental ultrasound images
were used containing various distributions of 9 to 20 point
scatters, 1 to 9 anechoic or hypoechoic cysts, or in vivo carotid
artery longitudinal or circular cross-sections.

The simulations were generated using Field II [17], [18],
and the transmission angle was zero degrees. Experimental
PICMUS data [1] were acquired with a Verasonics Vantage
256 ultrasound system and a linear L11-4v ultrasound probe.
To further improve the network robustness and avoid overfit-
ting, -2 dB Gaussian white noise was added to each single
plane wave RF signal. The ground truth images for training
were formed after incorporating the 75 plane wave transmis-
sions to create each corresponding DAS image. The ground
truth images were post-processed using the steps described in
the top of Fig. 1(a). All training and ground truth images were
normalized to the maximum signal amplitude. In addition,
the training and ground truth images were resized (using
downsampling with linear interpolation) from approximately
1500 ×128 samples to 256×256 samples. The entire dataset
was divided into dedicated training (60%), validation (20%),
and test (20%) datasets.

B. Network Architecture

The network architecture of cGAN is detailed in Fig. 1(b)
including one generator and two discriminators. The objective
of cGAN is to learn a nonlinear mapping from observed
images (x) and randomly distributed noise (z) to an output
image (y), given by the following equation.

LcGAN (G,D) =Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z)))]
(1)

where G is the generator which attempts to produce predicted
images that are close to the ground truth, D is the discriminator
which regards the images as real rather than fake, and E
is the log probability of D. In contrast to unconditional
GAN (uGAN) [19], cGAN has a symmetric network structure
and the input signal is evaluated both by the generator and
discriminator.

The architecture of the generator is based on U-Net [20],
which is widely applied in medical image segmentation. The
outline of the contraction path is composed of convolutional
layers, Batchnorm layers, and Leaky ReLU layers aimed at
capturing features. The expansion path contains transposed

Fig. 2: cGAN performance on pretraining dataset for the
discriminator loss (D) and generator loss (G).



convolutional layers, Batchnorm layers, Dropout layers, and
ReLU layers for precise localization. In addition, there is
a concatenation between the mirrored encoder and decoder
blocks. The discriminator has an analogous design to the
contraction path. For each loop, the discriminator works twice
and calculates the corresponding cross-entropy loss between
the input, ground truth, and generated images. An optimal
parameter λ was chosen after training the network iteratively,
while L1 loss alone (λ = 0) led to blurry results.

The total loss of the cGAN is described by the equation:

Ltotal = LcGAN + λLL1 (2)

The initial value of λ was defined as 100 [9]. Adam optimiza-
tion algorithm was applied with 800 epochs for pre-training,
800 epochs for training, and 200 epochs for fine-tuning, while
the initial learning rate was 0.0002. The hardware support was
Google Colab GPU with TensorFlow while the total runtime
was 15 hours.

To illustrate the final reconstructed results, the network-
generated images were compared to the corresponding ground
truth images by calculating the mutual information, described
by the following equation:

I(X;Y ) = H(X,Y )−H(X|Y )−H(Y |X) (3)

where H(X) and H(Y ) are the marginal entropies, H(X|Y )
and H(Y |X) are the conditional entropies. A high mutual

information indicates a strong correlation between the two im-
ages. In addition, we also assess the beamformed image quality
by calculating SNR, CNR, cross-correlation coefficient, and
joint entropy of a single CIRS phantom image and a single
in vivo image. For the CIRS phantom image, square regions
of interest (ROI) with 5 mm side length were chosen in the
center of the hyperechoic cyst for the target region with a
background ROI laterally offset to the right by 20 mm. For
the in vivo image, the target ROI was centered in the carotid
artery, and the background ROI was laterally offset to the right
by 15 mm.

III. RESULTS

Fig. 2 shows the discriminator and generator losses as a
function of the number of epochs for the pre-training dataset.
Because neither the generator nor the discriminator computes
the cross-entropy between predicted images and ground truth
images directly, they each tended to fluctuate competitively
along with epochs. As learning progressed, the total L1 loss
decreased.

Fig. 3(a-c) shows a single PW DAS beamformed image,
a 75 PW DAS images, and the cGAN-generated image for
the CIRS phantom, from left to right, respectively. Similarly,
Fig. 3(d-f) shows a single PW DAS beamformed image,
75 PW DAS image, and the cGAN-generated image for a
circular cross-section of an in vivo carotid artery, from left

(a) (b) (c)

(d) (e) (f)

Fig. 3: B-mode images of (a-c) a CIRS phantom and (d-f) a carotid artery cross-section, produced with (a,d) a single plane
wave insonification and DAS beamforming, (b,e) 75 multiple plane wave insonifications and DAS beamforming, and (c,f) a
single plane wave insonification and the cGAN prediction. The target and background ROIs are outlined in red and blue,
respectively.



TABLE II: Image Evaluation Results

Test case Method CNR SNR
corr

coef

joint

entropy

mutual

information

Carotid
single DAS 0.404 0.715 0.698 13.415 0.620

multi DAS 1.565 1.558 1 6.652 6.652

cGAN 1.600 1.606 0.987 11.278 2.530

CIRS phantom

single DAS 2.733 1.509 0.583 13.977 0.447

multi DAS 1.594 1.463 1 7.138 7.138

cGAN 1.715 1.474 0.966 11.978 2.229

to right, respectively. It is remarkable that with only 1 PW
insonification, the images generated by the cGAN present less
clutter and other artifacts in comparison to matched single PW
DAS results.

The image quality of the single PW insonification DAS and
cGAN results were compared against the multiple (i.e., 75) PW
DAS results, which were used as the ground truth. Results are
presented in Table II. Both in vivo and ex vivo RF channel
data achieve considerable image quality enhancements with
cGAN. The test dataset required 452 ms to generate one B-
mode image of size 256×256.

IV. DISCUSSION & CONCLUSION

We presented an alternative approach to process raw RF
ultrasound PW channel data using a cGAN. This cGAN
employs two regressive discriminators to compute the image
relevancy, which is more compatible than conventional CNN
U-Net designs to address complex information transfer. The
cGAN successfully learned the nonlinear mapping between
channel signal and high-quality B-mode PW images, without
further post-processing (e.g., delays computation, envelope de-
tection). We trained and tested our network with the PICMUS
PW dataset [1] containing experimental and simulated cysts,
resulting in cGANs that generated less artifacts with improved
correlation coefficients, while preserving details present in
DAS B-mode images created with multiple PW insonifica-
tions. The total computational cost and corresponding accuracy
both show the promise of using and improving cGANs for
future ultrasound-based tasks.
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