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Abstract—Deep learning approaches for improving ultrasound
image reconstruction have proven successful in both experimental
and clinical settings. In this paper, we present an autoencoder-
based deep learning framework for ultrasound beamforming
from the radio-frequency (RF) data received after a single plane
wave transmission. Motivated by U-Net, the network consists
of an encoder and a decoder. The network was trained and
evaluated on simulated, phantom, and in vivo datasets. When
tested on simulated data, the mean SNR, contrast, and gCNR
of the learned image results were 3.16, -35.96 dB and 1.0
respectively, as well as a mean PSNR of 18.61 dB when compared
to enhanced B-mode images. Each of these metrics outperformed
the standard delay-and-sum (DAS) beamforming algorithm for
the single plane wave image. In addition, the network was
evaluated on an in vivo breast mass, achieving improved image
quality compared to the corresponding single plane wave image.
These results highlight the promise of exploring the proposed
network to generate high quality ultrasound images from one
plane wave, which could be applied to multiple ultrasound-based
clinical tasks.

Index Terms—Ultrasound, Deep Learning, Convolutional Neu-
ral Network, Single Plane Wave, Image Generation

I. INTRODUCTION

Ultrasound is a widespread imaging modality in current
clinical medicine, and it is one of the most commonly used
diagnostic tools in specialties such as cardiology [1]. Com-
pared with other commonly used imaging modalities, such as
magnetic resonance imaging (MRI) and computed tomography
(CT), ultrasound imaging is real-time, portable, inexpensive,
and free of ionizing radiation risks [2]. Because of these
significant advantages, ultrasound has drawn a large amount of
research attention over the past decades and considerable effort
has been made to improve the quality of ultrasound images,
including resolution, contrast, and signal-to-noise ratios. One
important method to improve image quality is beamforming.
Some beamforming options include delay and sum (DAS)
and short-lag spatial coherence (SLSC) imaging [3]. However,
these options either suffer from poor image quality or high
computational complexity, which is not compatible with fast
real-time imaging.

Beamforming with deep learning has recently drawn a large
amount of research interest. Many deep learning algorithms
have been developed to increase the potential for high-quality,
ultrafast ultrasound imaging in clinical applications. Of par-
ticular interest is single plane wave imaging, which is capable
of displaying images at high frame rates at the expense of
poor image quality. Conversely, to improve image quality, it

is possible to acquire images with multiple plane waves, at
the cost of speed. Instead, deep learning may potentially be
utilized to form ultrasound images with image quality that is
comparable to multi-plane wave images, while retaining high
frame rates.

For example, Nair et al. [4] proposed a U-Net based deep
convolutional network with a VGG-13 encoder to directly
segment cyst targets and simultaneously display images using
raw ultrasound data, with the potential to reduce compu-
tational costs by skipping intermediate beamforming steps.
Hyun et al. [5] proposed a different CNN-based framework to
beamform ultrasound channel signals into speckle-reduced im-
ages. Although these and other approaches have demonstrated
the capability of using deep learning to improve ultrasound
beamforming, such approaches emphasize image quality rather
than speed. In this paper, we present an autoencoder-based
deep neural network (DNN) for ultrasound beamforming [4],
capable of converting the raw radio-frequency (RF) data from
one single plane wave and producing an image comparable to
multi-plane wave images. This network was submitted to the
Challenge on Ultrasound Beamforming with Deep Learning
(CUBDL) [6], [7] at the 2020 IEEE International Ultrasonics
Symposium to evaluate image quality and speed.

II. METHODS

A. Network Implementation

Motivated by the U-Net [8] and VGG-13 [9] architectures,
and similar to [4], our network directly takes the radio-
frequency (RF) data as input to generate high quality ultra-
sound images as the output. The complete DNN structure is
shown in Fig. 1. There are two major parts of the DNN: (1)
the encoder and (2) the decoder.

The encoder block employs convolutional, maxpool-
ing, batch normalization, and leaky rectified linear unit
(LeakyReLU) layers. The convolutional layers were imple-
mented with a 3 × 3 kernel, stride of 1, and 1 point of zero
padding for each dimension. Batch normalization layers were
used to standardize the inputs of each layer, and also to reduce
overfitting. The slope of the LeakyReLu was set to 0.2 [10].
The decoder block employs convolutional, up-convolutional,
batch normalization, and rectified linear units (ReLU) layers.
The kernel size of the up-convolutional layer was 2× 2 with
a stride of 2. The activation function of the last convolutional
layer was hyperbolic tangent (tanh), which was used to enforce
output values in the range [-1, 1].



Fig. 1. DNN architecture for ultrasound image generation.

With the aim of generating high quality images, we used an
L1 loss function (Mean Absolute Error) to train the network.
The network was trained with the Adam optimization algo-
rithm [11], a weight decay penalty of 1x10−4, and a learning
rate of 2x10−4. Based on empirical testing, we chose a mini-
batch size of 16. The network was written in Pytorch [12] and
trained on 4 NVIDIA P40 GPUs in parallel.

B. Network Training Datasets

The network was trained and tested using a combination of
three datasets: (1) the PICMUS (Plane-wave Imaging Chal-
lenge in Medical Ultrasound) dataset [13], (2) the Field II [14],
[15] dataset from [4], and (3) an in vivo breast dataset from
4 different patients. The PICMUS training data [13] included
two simulated datasets and two phantom datasets. For each
example, a set of 75 steered plane waves with angles from
-16◦ to 16◦ was either simulated or acquired. The input to
the network was the raw RF data associated with one plane
wave (i.e., any angle from -16◦ to 16◦), and the ground
truth was the corresponding image formed with 75 plane
wave transmissions, delay-and-sum beamforming, and plane
wave compounding. The RF test data set used plane wave
transmission angles that were not included during training.

The Field II dataset was created by Nair et al. [4], and
consists of a single anechoic cyst within a homogeneous
tissue background. The raw single plane wave RF data were
acquired from a single angle of 0◦ and used as the input to
the network. To eliminate clutter within the anechoic cyst, the
ground truth for the Field II dataset was an enhanced image
as described in [4], where the pixel values of the anechoic
regions were set to zero while preserving the pixel values of
the surrounding tissue. Images were beamformed using the
Ultrasound Toolbox [16] and displayed with 60 dB dynamic
range after log compression.

The in vivo breast ultrasound dataset was created from
4 different patients with two orthogonal scans (i.e., radial
and anti-radial) per patient. The data were acquired with an
Alpinion ECUBE-12R research ultrasound scanner connected
to either an L8-17 or L3-8 linear array ultrasound transducer.
These in vivo data were acquired after informed consent
and approval from the Johns Hopkins Medicine Institutional

Review Board. The raw single plane wave RF data were
acquired from different plane wave transmission angles within
the range of -16◦ to 16◦, and the ground truth was the same
as described for the PICMUS dataset.

The complete dataset (i.e., the PICMUS, Field II, and in vivo
breast datasets) consisted of 1,300 total training examples, 138
total validation examples, and 127 total testing examples. For
the PICMUS and in vivo datasets, the channel data images
were flipped, left to right, to augment the dataset. Preparation
of the complete dataset for input to the network followed
a series of preprocessing steps. First, the RF channel data
were cropped in the axial direction according to the axial
range of the ground truth image. Second, to reduce network
computational complexity and speed up the training process,
the amplitude of the final, log-compressed, 60-dB-dynamic-
range, beamformed image was normalized to the range [0,1]
(similar to the compression process reported in [4]). Therefore,
the raw output of the network is considered to be compressed.
Finally, the RF channel data corresponding to each single
plane wave transmission was paired with the corresponding
enhanced image and both were downsampled to size 256×128.
The network was trained for 1000 epochs with the PICMUS,
Field II, and breast datasets.

In order to reverse the compression and regain an image
with values that are suitable for image quality assessments,
the image was uncompressed with the following equation:

s = 10sdB/20 (1)

where s is the uncompressed pixel value, and sdB is the
compressed pixel with values ranging [0,1], as described in
the preceding paragraph.

C. Image Quality Metrics

The following image quality metrics were used to evaluate
and compare the image quality of the single plane wave, DNN,
and ground truth images:

1) Signal-to-noise ratio (SNR): SNR is a measure of the
smoothness of the tissue region and is defined as:

SNR =
So

σo
(2)

where So and σo are the mean and standard deviation, respec-
tively, of a background region of interest (ROI), measured for
both the compressed and uncompressed DNN outputs.

2) Contrast: Contrast is a measure of the signal intensity
ratio between the cyst and the tissue and is defined as:

Contrast = 20 log10

(
So

Si

)
(3)

where Si and So are the mean signal ampltudes within ROIs
inside and outside cysts, respectively.

3) Generalized contrast-to-noise ratio (gCNR): gCNR is
used to measure lesion detectability [17] and is defined as:

gCNR = 1−
1∑

x=0

min
x
{pi(x), po(x)} (4)

where pi(x) and po(x) are the probability mass functions of
the ROIs that produce Si and So, respectively.



4) Peak signal-to-noise ratio (PSNR): PSNR is a global
measure of similarity between the ground truth image and
either the single plane wave image or the DNN image. PSNR
is defined as:

PSNR = 10 log10

(
MAX2

MSE

)
(5)

where MAX is the maximum possible pixel value of the image
and MSE is the mean square error between two images.

5) Full width at half maximum (FWHM): The lateral and
axial FWHM of point targets were measured to quantify
resolution.

III. RESULTS AND DISCUSSION

Fig. 2(a) shows from left to right, respectively, correspond-
ing single plane wave, DNN, and ground truth images. The
top row shows one example from the Field II dataset, and the
bottom row shows one example from the PICMUS dataset.
When considering the images created from the Field II dataset
(i.e., the top row of Fig. 2(a)), the background of the DNN
image is smoother than that of the single-plane wave image,
and the anechoic cyst contains less acoustic clutter in the DNN
image than the single-plane wave image. The cyst in the DNN
image is qualitatively more similar to the enhanced image than
the single plane wave image, suggesting that with a goal of
improved cyst visualization, our DNN can generate relatively
high quality images with only one plane wave.

The PICMUS dataset (i.e., the bottom row of Fig. 2(a))
shows point targets and a hyperechoic cyst. The DNN image
shows a blurred version of the hyperechoic cyst and point
targets, likely due to the lack of hyperechoic targets during
training. Quantitatively, the mean axial and lateral FWHM for
the single plane wave image were 0.67 mm and 0.94 mm,
respectively. The mean axial and lateral FWHM for the DNN
image were 0.88 mm and 1.56 mm, respectively. Finally, the
mean axial and lateral FWHM for the ground truth image were
0.64 and 0.67 mm, respectively. The increased FWHM in the
DNN image is likely due to the lack of hyperechoic targets in
the training data. Therefore, the resolution and performance of
the DNN on hyperechoic targets can potentially be improved
by including additional data with point and other hyperechoic
targets during training.

Fig. 2(b) shows from left to right, respectively, a single plane
wave image, the DNN testing result, and the corresponding
ground truth image for one in vivo breast mass, which was
not included during training. The cyst in the DNN image is
significantly better visualized than the single plane wave image
and shows a similar general position compared to the ground
truth image. However, the DNN image is smoother, with less
dynamic range compared to the ground truth image, and the
cyst appears stretched in the DNN image compared to the
ground truth. The mean uncompressed SNR values for the
single plane, DNN, and ground truth images were 1.14, 2.30,
and 1.30, respectively. The corresponding mean contrast values
were 1.06 dB, -13.94 dB, and -14.18 dB, respectively (where
a more negative contrast is better), and the corresponding
mean gCNR values were 0.38, 0.99, and 1.0, respectively.

Fig. 2. (a) Example test results from the single plane wave DAS beamformed
image, the DNN output image, and the ground truth image of (top) one
example from the Field II dataset and (bottom) one example from the PICMUS
dataset. (b) Example test results from the in vivo breast dataset. Each image
is displayed with a 60 dB dynamic range.

These results demonstrate an improvement in SNR, contrast,
and gCNR for the DNN image when compared to the single
plane wave image. In addition, the mean PSNR values for
the single plane wave and DNN images were 14.78 dB and
13.52 dB, respectively. The performance of the network on
in vivo examples can potentially be further improved with the
inclusion of additional in vivo data in the training dataset.

Fig. 3 shows the SNR, contrast, and gCNR from the Field
II dataset as a function of the axial and lateral cyst position
in the image for each of the single plane wave, DNN, and
corresponding ground truth images. The SNR of the single
plane wave images is not included, because it is the same as
the enhanced image. The SNR of the compressed DNN output
is higher than the SNR of the uncompressed DNN output
across all lateral and axial positions. The mean compressed
SNR of the DNN image in the lateral and axial directions
were 14.91 and 12.91, respectively. The mean uncompressed
SNR of the DNN image in the axial and lateral directions were
3.21 and 3.10, respectively, resulting in a global mean SNR
of 3.16. Both the compressed and uncompressed DNN outputs
are higher than the ground truth (i.e., the enhanced image) with
mean SNR of 1.74 and 1.82 in the axial and lateral directions,
respectively, which means the background of the DNN output
image is smoother than that of the ground truth image.

The mean contrast of the uncompressed DNN image in
the axial and lateral directions were -39.35 dB and -32.56
dB, respectively, resulting in a global mean contrast of -35.96
dB. For all lateral and axial cyst positions shown in Fig. 3,



Fig. 3. Mean ± standard deviation of SNR, contrast, and gCNR as a function
of axial (z) and lateral (x) cyst positions from the Field II dataset and measured
from 127 testing examples. SNR was measured from both compressed
and uncompressed DNN output images as described in Section II-B. The
remaining metrics are measured from the uncompressed DNN output image.

the contrast of the DNN image is improved compared to the
single plane wave image, and is within one standard deviation
of the contrast of the ground truth image. The mean gCNR
of the uncompressed DNN for all lateral and axial positions
was approximately 1, which was larger than the gCNR of
the single plane wave image with a mean gCNR of 0.80.
The mean PSNR of the DNN image for all axial and lateral
cyst positions was 18.61 dB indicating the similarity between
the DNN image and the ground truth image across all cyst
positions.

Overall, the DNN images show improved quantitative image
quality results compared to the single plane wave images,
although there is room for improvement, particularly for the
hyperechoic and in vivo examples. Paired with the qualitatively
improved images of anechoic cysts, these results suggest that
the presented network could help to overcome the image
quality trade-off of single plane wave imaging. In addition,
because the proposed approach bypasses the need for multiple
plane waves and plane wave compounding, this approach has
the potential to be faster than a multi-plane wave approach.

IV. CONCLUSIONS

This paper describes a DNN architecture motivated by the
U-Net and VGG-13 architectures. The DNN is capable of
directly generating high quality ultrasound images from RF
data, bypassing the delay-and-sum and plane wave compound-
ing processes. The DNN output images generally achieve
improved image quality metrics compared to single plane
wave images, based on SNR, contrast, gCNR, and FWHM
measurements. The DNN output images are also globally
similar to enhanced images, indicated by a mean PSNR of

18.61 dB for the simulated test set and 13.52 dB for the in
vivo test set. These results highlight the promise of performing
additional explorations to generate high quality ultrasound
images from a single plane wave transmission, which could
be applied to multiple ultrasound-based clinical tasks.
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