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Abstract—In the past few years, deep learning has disrupted
several low-level medical imaging tasks such as reconstruction
of Computed Tomography (CT) and Magnetic Resonance (MR)
images. In this work, we propose a novel deep learning-based
approach for the low-level task of ultrasound image reconstruc-
tion from the pre-beamformed channel data. More specifically,
we adapt MobileNetV2 to train a model that mimics Minimum
Variance Beamforming (MVB). Results confirm that the proposed
method takes much less time to reconstruct images with a quality
similar to one achieved by applying MVB directly. The current
paper is a part of our submission to Challenge on Ultrasound
Beamforming with Deep Learning (CUBDL) announced by 2020
IEEE International Ultrasonics Symposium (IUS).

Index Terms—Adaptive beamforming, ultrasound imaging,
minimum variance, deep learning.

I. INTRODUCTION

Beamforming is an essential step in the ultrasound image
formation pipeline, which can be applied in both transmission
and receive steps. In receive beamforming, the main goal
is to extract the highest quality of spatial map of the tar-
get echogenicity. Adaptive methods estimate the apodization
weights from echo traces acquired by transducer elements and
have a better performance compared to non-adaptive methods
wherein a predefined set of weights are used.

Minimum Variance Beamforming (MVB) is one of the
best adaptive methods that performs well regardless of the
imaging settings [I]. MVB, however, is computationally very
expensive mainly because of the covariance matrix estimation
step. Therefore, speeding up MVB is of crucial importance to
make it applicable online [2]]—[4].

Recently, deep learning (DL) has been proposed for ultra-
sound image reconstruction [S]-[9]. There are a variety of
approaches to accomplish this task. More specifically, DL
can be designed to complete a single, few, or all of the
reconstruction steps. Another advantage is that DL can simul-
taneously fulfill another objective such as speckle reduction or
super-resolution in the reconstruction process. Nevertheless,
the design of ultrasound image reconstruction using deep
learning entails several challenges. The scarcity of training
data as well as lack of ground truth are among the main
limitations. Moreover, the changes in imaging settings cause
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a large domain shift in the high dimensional input space of
DL, limiting its generalization.

Herein, we strive to address all of the aforementioned
challenges. In essence, the proposed approach is designed to
approximate MVB. As MVB can be summarized in a set of
closed-form mathematical steps, we can calculate the desired
output for any input. As such, we do not have the problem
of domain shift or lack of ground truth. Furthermore, the
proposed method does not need many training images since
MVB works on each pixel separately meaning that each pixel
is a sample in the training process.

We also consider the fact that all mathematical trans-
formations, including DL, cannot generate new information
that is not present in the input data. Therefore, necessary
preprocessing steps are applied to raw Radio-Frequency (RF)
channel data before feeding it to the network, and the network
input contains all required information for estimating the result
of MVB. More specifically, first, IQ demodulation is applied
to the RF channel data since MVB requires complex signals
to compute complex weights allowing for beampatterns that
are asymmetrical around the center of the beam. Second, time
delays are compensated to reduce the load on the network.
Finally, the F-number is fixed for all image depths in order to
make the image quality uniform.

MobileNetV?2 is used as the network structure since it is a
leading architecture for networks with low computational com-
plexity and memory requirement. This is of critical importance
for commercial success of deep learning beamforming given
the very large ultrasound frame-rate and limited computational
resources, especially in mobile ultrasound devices.

The proposed method is trained on a set of public datasets
available in the ultrasound toolbox [10]. The proposed
approach has been accepted for presentation during the
Challenge on Ultrasound Beamforming with Deep Learning
(CUBDL) at the 2020 IEEE International Ultrasonics
Symposium (IUS) [11]], [12]. The results presented here
only correspond to the training step because the test data is
not released to the participants while the challenge is ongoing.

II. METHOD

Consider an ultrasound array that transmits a pulse into
the domain with a sound speed of c. Regardless of the
transmission technique, let us assume n elements record the
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Fig. 1. Diagram of the proposed method.

backscattered signals, denoted by h;(¢). d; is defined as the
transmission distance from the origin of the transmitted pulse
to an arbitrary point (z,x) in the region-of-interest (ROI),
and d,. is the receiving distance from (z,z) to the location
of element i. The RF data corresponding to (z,z) in h;(t)
can be found by applying the propagation delay as follows
(hereafter, capital and bold font variables represent matrices
and vectors, respectively):

L (1)
where r; is the RF data of channel ¢, which corresponds to the
point (z,z) in the ROL S is defined as the resulting image
of ROI and each pixel (z,z) of S can be obtained through
a weighted summation of RF data corresponding to receiving
elements as follows:
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where w is the apodization window of length n. Eq. [ can be
vectorized in the following form:

s=whlr, 3)

The goal of receive beamforming is to estimate the apodization
window in order to reconstruct a high-quality ultrasound image
which is a spatial map of the target echogenicity.

A. Minimum variance beamforming

In Capon’s MVB, data dependent apodization weights w
are estimated while a unity gain is maintained in the steering
direction [1]]. The corresponding minimization problem is as
follows:

minE{\s\Q}:wHRw st. wha=1 4)

where R = E{rr”} is the spatial covariance matrix and E
refers to the expectation operation. For delayed signals, the
steering vector a = 1. Eq. 4] can be solved using the method
of Lagrange multipliers, and the estimated apodization vector
is as follows [1]:
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The estimation of R is made robust with temporal averaging
over 2k + 1 samples and averaging over subarrays of length [
as follows [[1]]:
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where:
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A diagonal loading factor is added to the covariance matrix
for numerical stability by R(z,z) = R(z,z) + €I, where I is
the identity matrix and:

€= %trace(R(z, x)) (8)

The result of subarray averaging is a vector of length [. Finally,
each point (z, z) of S using MVB can be computed as follows:
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B. The proposed method

The proposed receive beamforming approach can be sum-

marized in a few steps presented in Fig. [T} It has to be
mentioned that the input to the network is supposed to be
within the [—1,1] range otherwise RF channel data has to be
scaled proportionally.
Each pixel of the image is reconstructed separately as is the
case for MVB. The network’s input is a 2 X m X n matrix in
which first the two channels are the real and imaginary parts
of IQ data, n is the number of channels and m is the length
of the window considered for temporal averaging to preserve
the speckle statistics. The network output is a two-dimensional
vector containing real and imaginary parts of the beamformed
data. The network is designed to estimate the apodization
window and apply Eq. [9] on the input IQ channel data. After
reconstructing the whole output IQ data, it is subjected to
envelope detection and log compression in order to obtain the
final B-mode ultrasound image.

As mentioned before, MobileNetV2 [13]] is used as the
network structure. The MobileNetV2 architecture is based
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Fig. 2. Overview of the MobileNetv2 architecture. GAP refers to Global Average Pooling.

on using depth-wise separable convolution building blocks.
Moreover, it contains linear bottlenecks between the layers
as well as shortcut connections between the bottlenecks. An
overview of the MobileNetv2 architecture is shown in Fig.
More details regarding MobileNetV2 can be found in [[13].

C. Training

As the trained network has to be able to generalize across
the range of parameters provided in the CUBDL Data Guide,
the network is trained with a variety of imaging settings
such as the acquisition center frequency, sampling frequency,
transducer shape, and number of transducer elements. More
specifically, the training data contains one image collected
with a phased array probe and 10 images collected with
linear array probes. Among the second group, 2 images are
from focused imaging dataset and 8 are from coherent plane-
wave compounding (CPWC) dataset. 2 of CPWC data are
collected with an Alpinion scanner (Seoul, South Korea) using
a L3-8 probe and the other 6 are collected with Verasonics
Vantage 256 platform (Kirkland, WA, USA) and the linear
L11-4v probe. All these datasets are publicly available through
UltraSound ToolBox (USTB) [10]. The network’s output for
each image is reconstructed using the MVB code provided by
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Fig. 3. Plot of the training and validation losses during training.

USTB. The number of input channels (n) is different based
on the probe specifications, while the length of window for
temporal averaging (m) is set to 32 for all datasets.

The model is implemented using PyTorch library. The batch
size is 50, and AdamW optimizer with 5; = 0.9 and [y =
0.999 is used. The learning rate is linearly decayed from 103
to 5 x 1075 during 50 epochs. Fig. [3| illustrates the training
history of the network. As the network works on each pixel of
the image separately, the total size of the input-output pairs is
more than 1 million. 80 percent of the data is used for training
and 20 percent for validation. Fig. [3] confirms that the weights
are not overfitted to the training dataset.

III. RESULTS AND DISCUSSION

In this section, the results on training and validation datasets
are presented. As mentioned before, we do not have any test
data because they are not released to the participants while
the challenge is ongoing. Fig. {] shows the results on CPWC
datasets containing Simulation Resolution (SR), Experimental
Resolution (ER), Simulation Contrast (SC), and Experimental
Contrast (EC) images. Fig. [ confirms that the proposed
approach provides images of a better quality than Delay And
Sum (DAS) beamformer and similar to MVB. This comes
with a large gain in speed: MVB takes 4.05 min for the
reconstruction of EC image while the proposed method takes
0.67 min. Although it is still far from real-time performance,
the current paper can be considered as a proof of concept
that DL can be used to speed-up the classical approaches.
Moreover, our proper design confirms that deep learning can
be used with a wide variety of imaging settings which is one of
the main problems limiting the medical practical applications
of deep learning.

IV. CONCLUSION

In this paper, a deep learning framework for ultrasound
beamforming has been presented. The proposed approach is
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Fig. 4. Beamforming results on the single 0° plane wave. Columns indicate different image data sets while rows correspond to beamforming methods.

based on MobileNetV2 structure and works on IQ channel
data to reconstruct each pixel of the final image separately.
The training results confirm that deep learning can be used as
a general beamformer working on a wide variety of imaging
settings.
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